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Self-sustained oscillations and chaos in space charge limited currents

Yu. N. Gartstein and P. S. Ramesh
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In kinetic simulations of a flow of charged particles between two parallel plate electrodes, it is found that
chaotic responses in space charge limited currents can be induced by a periodically varying applied voltage.
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PACS numbdrs): 05.45~a, 52.80.Vp

Space charge limited currentSCLCs in vacuum tubes ticle chargeq>0. The applied voltag® is simply the dif-
are a classical subject with the history going back to theerence of the electrode potentials. See R6}. for other
beginning of this centurysee, e.g., Ref§1,2]). Commonly,  definitions) A notable feature of current-voltage relatié)
it is referred to in connection with the famous Langmuir- shown with the circular data points is a hysteresis where the
child $-power law [1,2] describing a nonlinear current- system can carry both SCLC and SLC depending on which
voltage relation for electrons moving between cathode andide the voltage/ is approached from. Transitions between
anode electrodes. Analysis of current-voltage relations ishese two branches are abrupt when the system jumps from
more involved when electrons have arbitrary initial veloci- one state to the othd6—8]. Computer simulations showed
ties. Our interest in this topic has been stimulated by probthat no steady state is achieved here in the SCLC regime.
lems arising in the context of some modern xerographic techWhat happens instead are self-sustained oscillations that
nologies. In the process of xerographic developmentWould diminish upon broadening the injection energy distri-
charged resin microparticle¢so-called tonejs are “in-  bution[6—8]. Note that shown in Fig. 1 and discussed in Ref.
jected” from the side of one electrode, a donor, and can bé8] is a hysteresis with respect to a varied applied voltage,
collected on the opposite electrode, a receiver. Although alfvhile the hysteresis of Ref§6,7] is that with respect to the
the physical parameters such as charge and mass of toners!gECtion current variations with the diode being short-
the interelectrode spacing are very different from those cherUIted.
curring in vacuum-tube electronics, the relevant combined
guantities can be in the same range where space charge ef-
fects are of importance. In this paper we are concerned with
a situation where all particles injected at the donor electrode
are identical and have nearly equal initial velocities. The
idealized mathematical model of such a system was shown to
reveal interesting properties. A classical steady-state analysis ._, [
found multiple types of electrostatic potential distribution in = 0.6
between electrodds8], and phenomena like a hysteretic re- [
sponse[3,4] and negative resistandd]| were discussed. 0.4
Later computer simulations demonstrated a dynamical occur- i
rence of the hysteresis. What is more, the system was found 0.2
to exhibit self-sustained oscillatiof§—8]. In the present Re- i
port we further emphasize a complex nonlinear-dynamical- 0.0k ..
system nature of this seemingly simple system by showing -1
that its periodic perturbation can lead to chaotic responses in V/ %o
space charge limited currents.

For clarity, the system under consideration is “intro-
duced” in Fig. 1, which shows current-voltage relations be-
tween parallel plate electrodes in terms of the transmitte
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FIG. 1. The transmitted curredtas a fraction of the injectepd
for P=5.98 as a function of the applied voltage. C4&g corre-
ponds to zero injection velocities, in cag the injection energy

t] fracti f the iniected tas has b S g¢y. The circles denote the data points calculated, and the solid
currentJ as a Iraction of the injected curreptas has been . q just connect them. The arrows indicate the direction of the

pglculated in the S|mu!at|ons descnbe_d ,b,e'OW- In_qaj;ehe voltage change for the two branches. The dashed line shows the
injected charged particles had zero initial velocities. CurV&pirg pranch where the voltage was changed from inside that volt-
(1) p_reC|ser reproduce§ the Langmuir-Child law until SOME,ge segment starting from the specially prepared §tzte(c) in
applied voltagé/,, at which the current becomes supply lim- ig. 2]. Although not shown with the data points, the calculations
ited (SLC), J=] [9]. Very different current-voltage relations here were performed also only for the same voltage steps as those
are represented by curvéd. Here the injected currepwas  connected with the solid lines. In actuality, all the transitions be-
the samebut all particles had a finite initial velocity corre- tween different branches are abrupt, that is, “vertical,” and would
sponding to the kinetic energy®,. (For certainty, the par- happen at some voltage intermediate between the chosen steps.
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The results in Fig. 1 have been obtained usirdyaami- o ———
cal analysis based on theollisionlesskinetic equatior[ 10]
gt Yox map @ —~ '

. . . T = 7r -
where f(t,x,v) is a time t-dependent particle distribution 5[
function in the phase space of the one-dimensional coordi 5 [ e
nate x and velocityv. The self-consistent force acting on E 6l g s 4
particles is given by = —qd ¢/ dx with the electrostatic po- = [ Ze (c) ]
tential ¢ found from Poisson’s equation where the particle L i ]
density p(t,x)=[,f(t,x,v)dv. In the spirit of Liouville's 5r ;‘}6. (a) |
theorem[11], the system has been represented by phas r 5 © j
space points whose dynamics is followed according to the Al o 10 =0 0% 1
self-consistent forcg8]. It is instructive to realize that the 0.20 — ‘0 :30 ’ 0 ;‘O 050
system under consideration belongs to the class of nonlinez I ' X ‘ '
dissipative systems. The nonlinearity here is provided by °
space charge while thiateraction with the electrodepro- FIG. 2. The long-time phase portraits of the system dynamics in

vides generalized dissipation. Indeed, consider, e.g., the tot@e plane of the cloud total mass vs the relative position of the
“mass” in the gap, M(t)=[p(t,x)dx. Injection of addi- cloud. Casega)—(c) correspond to different stable solutions. The
tional particles would increase this amouytiegative resis-  applied voltageV/$,=1, P=5.98, and the injection energy is
tance”) while absorption of particles that reach electrodesq¢,. The inset shows the temporal evolution of the cloud total
would reduce the total mag¥positive resistance}. The be-  mass for oscillating solutions where the time is measured in units of
havior of the system is significantly affected by the bound-time of flight.
ary, or dissipation, conditions. The case we are interested in
corresponds, on one hand, to the equal energy continuous
injection at the donor and, on the other hand, to the reflecmore stable limit cycld15] state of our system at the same
tionless absorption by the donor and by the receiver of parvoltage. The dynamics of this state is shown by cuitegsn
ticle that reach them moving from inside the gap. PracticallyFig. 2. As compared with stat@), state(c) exhibits higher
the shorter the simulation time steps are the closer the agrequency smaller amplitude oscillations The transmitted
proach would be to the continuous injection. A truly con-currentd/j for states(a), (b), and(c) at this applied voltage,
tinuum system with an infinite number of degrees of freedomafter averaging over about 4%8 turns out to be 1, 0.51,
is represented therefore by a system with a finite and variablend 0.43, respectively. When the applied voltage changes by
number of degrees of freedofdouble the number of the small portions in both directions starting from stétg, the
phase space points at a given moment of jinf@r present system responds with the current-voltage relations shown by
results, the time steps have been about 0.008 of the time ¢fie dashed line in Fig. 1. It jumps to the SCLC or SLC states
flight 7=L/vowherev is the initial velocity. at the lower and upper ends of this dashed segment. In other
The hysteretic current-voltage relatiof®) represented words, for a range of applied constant voltages, the system
with circles in Fig. 1 is a result of successive change of thaedescribed by Eq(1) with our boundary conditions can be at
applied voltage by small portions as indicated by the datdeast in three different stable states carrying three different
points and, after the transients die off, of collectilagerag- currents.
ing) the current delivered to the receiver over some fixed It is known that forced self-oscillatory systems can reveal
period of time. The hysteresis reflects some “memory” in different types of behavior such as entrainment of frequency
the system through the state of the cloud of charged particleand almost periodic oscillatio}43]. However, the existence
in the gap between electrodes induced at earlier times. Tof different stable states of the unperturbed system in the
illustrate the nonaveraged temporal dynamics, Fig. 2 displaysicinity of each other suggests the possibility of even more
its projection, atV/¢,=1, onto the plane of two “macro- complex dynamics of the forced system when, e.g., the latter
scopic” variablesM and X, where the relative position of would move across the regions of the phase space that be-
the center of mas¥ (t)= (ML) 1fxp(t,x)dx.Point(a) (for ~ longed to different unperturbed domains of attraction
clarity surrounded by a circlecorresponds to the SLC part [16,17. We will now study the response of our system to a
of the current-voltage relation, with the variables obviouslyperiodic variation of the applied voltage,
constant for this steady state. Various phase trajectories
would approach pointa) [8] in a way characteristic of stable V(t)=V1+V; cog wgrivt). 2
nodes[12,13. The SCLC counterpart of the current-voltage
relation reveals, however, an oscillatory dynamics appearindhe phase portraits shown in Fig. 3 have been obtained for
as limit cycle (b) in Fig. 2 [8,14]. The abrupt transitions the case ofV,/¢o=1V,/¢$y=0.64, and the driving force
between SLC and SCLC in Fig. 1 correspond to the node operiod Tpe/7:=2.39. Limit cycle (a) in Fig. 3 originates
limit cycle losing their respective stability. The history lead- from a sinusoidal response of the system in the SLC regime
ing to state(b) is determined by a slow ascent along the(in fact, here the amplitud¥, is insufficient to break the
SCLC curve in Fig. 1. Surprisingly, as was found in Réf, current flow and the injected current is all collegtedhen
some other history routes can lead to another, at least orariginated from the SCLC regime, however, the response
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FIG. 3. The long-time phase portraits of the system periodically / per
driven as described in the text. Regiff@ corresponds to the SCL- . ) . _
originated solution whildb) originates in the SCLCP=5.98 and FIG. 5. An illustration of the divergence of two nearby trajec-
the injection energy is|¢,. tories shown with solid and dashed lines, respectively. At ttime

=0, a tiny detuning of 108 of the period was introduced in the
phase of the driving force. The inset shows a log-log plot of the
forms quite an entangled figute) in Fig. 3, reminiscent of normalized number of pairs of points on the reconstructed trajectory
strange attractorisl2,18. Both temporal variations d¥l and within a given distance in embeddi_ng spaces of different o_Iimen-
of the current transmitted per driving period also appear chaSions p- The leveled off slope at highep gives the correlation
otic. To get a better idea of the degree of irregularity of thed!mensmn of the attractor. For clarity, t_he curves at diffepnere
dynamics associated with ca&s, we simulated it over 1000 displaced from each other along thexis.
driving periods and calculated the power spectrum of the
variations ofM(t), which is shown in Fig. 4. Besides the
pronounced peak corresponding to the driving frequency, th&ince we are dealing with a nonautonoumous system, for full
spectrum exhibits the features characteristic of chaotic moeharacterization of its state, timemust also be specified
tion [17-19. The spectrum is practically continuous and has[12]. Figure 5 compares the time dependence of two trajec-
substantial power in the low frequency region. As is known,tories (in terms of the macroscopic coordinaxg) whose
an almost periodic motion would have an essentially discretgjifference was caused by a tiny detuning of the phase of the
spectrum[17-20. A crucial feature of the motion on the driving force at timet=0, corresponding to the time shift
strange attractor is its sensitive dependence on initial condl-ﬂwlo—s-rper in Eq. (2). The system was driven for a long
tions. Figure 5 illustrates such a dependence for our systeMime for transients to decay hy=0. Evidently the trajecto-

ries “completely” diverge within about 20 periods of the
driving force. We observed a similar picture for numerous
other examples and had all indications of the positive largest
Liapunov exponent12,18,2Q, although we could not reli-
ably quantify it. For a more quantitative characterization of
the attractor, we chose, as is frequently convenient, to deter-
mine its correlation dimensiofl2,18,2(0. As described in
those references, we used the attractor reconstruction tech-
nigue, analyzing trajectories in spaces of a series of delayed
coordinates (X.(t),Xc(t+7), ... XJt+(p—1)7]). The
delay timer and embedding dimensignwere varied. The
inset in Fig. 5 shows a log-log plot of the normalized number
C(r) of pairs of trajectory points within distancérom each
-3 S ! other in the embedding spaces of variqu$20]. For this

0.0 0.4 0.8 1.2 1.6 2.0 plot, 2000 trajectory points were used with=0.2T ;e Ap-

9/ Wario parently, the slope of log-log graphs quickly levels off at

FIG. 4. The power spectrum of the cloud mass variations in théﬂ'iglher p. yielding the attractor C(_)rrelatipn dimensipn _Of
periodically forced system as exemplified by phase portiiin ~ aPOUt flsome‘{vhat larger than2. This again ft_rongly indi-
Fig. 3. Here the simulations ran over 1000 external force periodscated “low-dimensional deterministic chaos” in our system

after which the overall average was determined and variation&§ather than noise that could be caused by a large number of
SM(t) calculated with respect to that averagdl () are Fourier ~independent degrees of freeddd®,20. Changing the pa-
components of those variations. For clarity, the actual data weréameters of the driving force in E) we have been able to
additionally box averaged over frequency intervals éf observe different degrees of irregularity in the dynamics.
=0.0lwyy;, - Higher amplitudesv, can cause switching to the SLC re-
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gime. In this report we do not pursue a quantitative study otarriers executing flights in the gap between two electrodes
the motion dependence on the parameters of the drivingan exhibit many fascinating features of nonlinear dissipative
force. dynamical systems. In addition to earlier known self-

In conclusion, we have further demonstrated that such austained oscillations and hysteresis, chaotic responses have
seemingly simple system consisting of one type of charg@ow been found to be induced by a periodic applied force.
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