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Self-sustained oscillations and chaos in space charge limited currents
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~Received 7 October 1998; revised manuscript received 24 February 1999!

In kinetic simulations of a flow of charged particles between two parallel plate electrodes, it is found that
chaotic responses in space charge limited currents can be induced by a periodically varying applied voltage.
@S1063-651X~99!10707-4#

PACS number~s!: 05.45.2a, 52.80.Vp
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Space charge limited currents~SCLCs! in vacuum tubes
are a classical subject with the history going back to
beginning of this century~see, e.g., Refs.@1,2#!. Commonly,
it is referred to in connection with the famous Langmu
child 3

2-power law @1,2# describing a nonlinear curren
voltage relation for electrons moving between cathode
anode electrodes. Analysis of current-voltage relations
more involved when electrons have arbitrary initial velo
ties. Our interest in this topic has been stimulated by pr
lems arising in the context of some modern xerographic te
nologies. In the process of xerographic developme
charged resin microparticles~so-called toners! are ‘‘in-
jected’’ from the side of one electrode, a donor, and can
collected on the opposite electrode, a receiver. Although
the physical parameters such as charge and mass of tone
the interelectrode spacing are very different from those
curring in vacuum-tube electronics, the relevant combin
quantities can be in the same range where space charg
fects are of importance. In this paper we are concerned w
a situation where all particles injected at the donor electr
are identical and have nearly equal initial velocities. T
idealized mathematical model of such a system was show
reveal interesting properties. A classical steady-state ana
found multiple types of electrostatic potential distribution
between electrodes@3#, and phenomena like a hysteretic r
sponse@3,4# and negative resistance@5# were discussed
Later computer simulations demonstrated a dynamical oc
rence of the hysteresis. What is more, the system was fo
to exhibit self-sustained oscillations@6–8#. In the present Re-
port we further emphasize a complex nonlinear-dynamic
system nature of this seemingly simple system by show
that its periodic perturbation can lead to chaotic response
space charge limited currents.

For clarity, the system under consideration is ‘‘intr
duced’’ in Fig. 1, which shows current-voltage relations b
tween parallel plate electrodes in terms of the transmi
currentJ as a fraction of the injected currentj, as has been
calculated in the simulations described below. In case~1! the
injected charged particles had zero initial velocities. Cu
~1! precisely reproduces the Langmuir-Child law until som
applied voltageVm at which the current becomes supply lim
ited ~SLC!, J5 j @9#. Very different current-voltage relation
are represented by curves~2!. Here the injected currentj was
the samebut all particles had a finite initial velocity corre
sponding to the kinetic energyqf0 . ~For certainty, the par-
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e

d
is

-
h-
t,

e
ll

s or
c-
d
ef-
th
e

e
to
sis

r-
nd

l-
g
in

-
d

e

ticle chargeq.0. The applied voltageV is simply the dif-
ference of the electrode potentials. See Ref.@9# for other
definitions.! A notable feature of current-voltage relation~2!
shown with the circular data points is a hysteresis where
system can carry both SCLC and SLC depending on wh
side the voltageV is approached from. Transitions betwee
these two branches are abrupt when the system jumps
one state to the other@6–8#. Computer simulations showe
that no steady state is achieved here in the SCLC regi
What happens instead are self-sustained oscillations
would diminish upon broadening the injection energy dis
bution@6–8#. Note that shown in Fig. 1 and discussed in R
@8# is a hysteresis with respect to a varied applied volta
while the hysteresis of Refs.@6,7# is that with respect to the
injection current variations with the diode being sho
circuited.

FIG. 1. The transmitted currentJ as a fraction of the injectedj
for P55.98 as a function of the applied voltage. Case~1! corre-
sponds to zero injection velocities, in case~2! the injection energy
is qf0 . The circles denote the data points calculated, and the s
lines just connect them. The arrows indicate the direction of
voltage change for the two branches. The dashed line shows
third branch where the voltage was changed from inside that v
age segment starting from the specially prepared state@case~c! in
Fig. 2#. Although not shown with the data points, the calculatio
here were performed also only for the same voltage steps as t
connected with the solid lines. In actuality, all the transitions b
tween different branches are abrupt, that is, ‘‘vertical,’’ and wou
happen at some voltage intermediate between the chosen step
1069 ©1999 The American Physical Society
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The results in Fig. 1 have been obtained using adynami-
cal analysis based on thecollisionlesskinetic equation@10#

] f

]t
1v

] f

]x
1

F

m

] f

]v
50, ~1!

where f (t,x,v) is a time t-dependent particle distributio
function in the phase space of the one-dimensional coo
nate x and velocityv. The self-consistent force acting o
particles is given byF52q]f/]x with the electrostatic po-
tential f found from Poisson’s equation where the partic
density r(t,x)5*v f (t,x,v)dv. In the spirit of Liouville’s
theorem @11#, the system has been represented by ph
space points whose dynamics is followed according to
self-consistent force@8#. It is instructive to realize that the
system under consideration belongs to the class of nonli
dissipative systems. The nonlinearity here is provided
space charge while theinteraction with the electrodespro-
vides generalized dissipation. Indeed, consider, e.g., the
‘‘mass’’ in the gap, M (t)5*r(t,x)dx. Injection of addi-
tional particles would increase this amount~‘‘negative resis-
tance’’! while absorption of particles that reach electrod
would reduce the total mass~‘‘positive resistance’’!. The be-
havior of the system is significantly affected by the boun
ary, or dissipation, conditions. The case we are intereste
corresponds, on one hand, to the equal energy continu
injection at the donor and, on the other hand, to the refl
tionless absorption by the donor and by the receiver of p
ticle that reach them moving from inside the gap. Practica
the shorter the simulation time steps are the closer the
proach would be to the continuous injection. A truly co
tinuum system with an infinite number of degrees of freed
is represented therefore by a system with a finite and vari
number of degrees of freedom~double the number of the
phase space points at a given moment of time!. For present
results, the time steps have been about 0.008 of the tim
flight t f5L/v0wherev0 is the initial velocity.

The hysteretic current-voltage relation~2! represented
with circles in Fig. 1 is a result of successive change of
applied voltage by small portions as indicated by the d
points and, after the transients die off, of collecting~averag-
ing! the current delivered to the receiver over some fix
period of time. The hysteresis reflects some ‘‘memory’’
the system through the state of the cloud of charged parti
in the gap between electrodes induced at earlier times
illustrate the nonaveraged temporal dynamics, Fig. 2 disp
its projection, atV/f051, onto the plane of two ‘‘macro-
scopic’’ variablesM and Xc where the relative position o
the center of massXc(t)5(ML)21*xr(t,x)dx.Point~a! ~for
clarity surrounded by a circle! corresponds to the SLC pa
of the current-voltage relation, with the variables obviou
constant for this steady state. Various phase trajecto
would approach point~a! @8# in a way characteristic of stabl
nodes@12,13#. The SCLC counterpart of the current-voltag
relation reveals, however, an oscillatory dynamics appea
as limit cycle ~b! in Fig. 2 @8,14#. The abrupt transitions
between SLC and SCLC in Fig. 1 correspond to the node
limit cycle losing their respective stability. The history lea
ing to state~b! is determined by a slow ascent along t
SCLC curve in Fig. 1. Surprisingly, as was found in Ref.@6#,
some other history routes can lead to another, at least
i-
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more stable limit cycle@15# state of our system at the sam
voltage. The dynamics of this state is shown by curves~c! in
Fig. 2. As compared with state~b!, state~c! exhibits higher
frequency smaller amplitude oscillations The transmit
currentJ/ j for states~a!, ~b!, and~c! at this applied voltage,
after averaging over about 47.8t f , turns out to be 1, 0.51
and 0.43, respectively. When the applied voltage change
small portions in both directions starting from state~c!, the
system responds with the current-voltage relations shown
the dashed line in Fig. 1. It jumps to the SCLC or SLC sta
at the lower and upper ends of this dashed segment. In o
words, for a range of applied constant voltages, the sys
described by Eq.~1! with our boundary conditions can be a
least in three different stable states carrying three differ
currents.

It is known that forced self-oscillatory systems can rev
different types of behavior such as entrainment of freque
and almost periodic oscillations@13#. However, the existence
of different stable states of the unperturbed system in
vicinity of each other suggests the possibility of even mo
complex dynamics of the forced system when, e.g., the la
would move across the regions of the phase space tha
longed to different unperturbed domains of attracti
@16,17#. We will now study the response of our system to
periodic variation of the applied voltage,

V~ t !5V11V2 cos~vdrivt !. ~2!

The phase portraits shown in Fig. 3 have been obtained
the case ofV1 /f051,V2 /f050.64, and the driving force
period Tper/t f52.39. Limit cycle ~a! in Fig. 3 originates
from a sinusoidal response of the system in the SLC reg
~in fact, here the amplitudeV2 is insufficient to break the
current flow and the injected current is all collected!. When
originated from the SCLC regime, however, the respo

FIG. 2. The long-time phase portraits of the system dynamic
the plane of the cloud total mass vs the relative position of
cloud. Cases~a!–~c! correspond to different stable solutions. Th
applied voltageV/f051, P55.98, and the injection energy i
qf0 . The inset shows the temporal evolution of the cloud to
mass for oscillating solutions where the time is measured in unit
time of flight.



h
h

th
e
th

m
a
n

re
e
nd
te

ull

c-

he

s
st

f
er-

ch-
ed

r

t
f

of

s.

all
-

th

d
ion

e

-

e
ry
n-

PRE 60 1071BRIEF REPORTS
forms quite an entangled figure~b! in Fig. 3, reminiscent of
strange attractors@12,18#. Both temporal variations ofM and
of the current transmitted per driving period also appear c
otic. To get a better idea of the degree of irregularity of t
dynamics associated with case~b!, we simulated it over 1000
driving periods and calculated the power spectrum of
variations ofM (t), which is shown in Fig. 4. Besides th
pronounced peak corresponding to the driving frequency,
spectrum exhibits the features characteristic of chaotic
tion @17–19#. The spectrum is practically continuous and h
substantial power in the low frequency region. As is know
an almost periodic motion would have an essentially disc
spectrum@17–20#. A crucial feature of the motion on th
strange attractor is its sensitive dependence on initial co
tions. Figure 5 illustrates such a dependence for our sys

FIG. 3. The long-time phase portraits of the system periodic
driven as described in the text. Regime~a! corresponds to the SCL
originated solution while~b! originates in the SCLC.P55.98 and
the injection energy isqf0 .

FIG. 4. The power spectrum of the cloud mass variations in
periodically forced system as exemplified by phase portrait~b! in
Fig. 3. Here the simulations ran over 1000 external force perio
after which the overall average was determined and variat
dM (t) calculated with respect to that average.dM (v) are Fourier
components of those variations. For clarity, the actual data w
additionally box averaged over frequency intervals ofdv
50.01vdriv .
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Since we are dealing with a nonautonoumous system, for f
characterization of its state, timet must also be specified
@12#. Figure 5 compares the time dependence of two traje
tories ~in terms of the macroscopic coordinateXc) whose
difference was caused by a tiny detuning of the phase of t
driving force at timet50, corresponding to the time shiftt
→t11028Tper in Eq. ~2!. The system was driven for a long
time for transients to decay byt50. Evidently the trajecto-
ries ‘‘completely’’ diverge within about 20 periods of the
driving force. We observed a similar picture for numerou
other examples and had all indications of the positive large
Liapunov exponent@12,18,20#, although we could not reli-
ably quantify it. For a more quantitative characterization o
the attractor, we chose, as is frequently convenient, to det
mine its correlation dimension@12,18,20#. As described in
those references, we used the attractor reconstruction te
nique, analyzing trajectories in spaces of a series of delay
coordinates „Xc(t),Xc(t1t), . . . ,Xc@ t1(p21)t#…. The
delay timet and embedding dimensionp were varied. The
inset in Fig. 5 shows a log-log plot of the normalized numbe
C(r ) of pairs of trajectory points within distancer from each
other in the embedding spaces of variousp @20#. For this
plot, 2000 trajectory points were used witht50.2Tper. Ap-
parently, the slope of log-log graphs quickly levels off a
higher p, yielding the attractor correlation dimension o
about ~somewhat larger than! 2. This again strongly indi-
cated ‘‘low-dimensional deterministic chaos’’ in our system
rather than noise that could be caused by a large number
independent degrees of freedom@12,20#. Changing the pa-
rameters of the driving force in Eq.~2! we have been able to
observe different degrees of irregularity in the dynamic
Higher amplitudesV2 can cause switching to the SLC re-
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FIG. 5. An illustration of the divergence of two nearby trajec
tories shown with solid and dashed lines, respectively. At timet
50, a tiny detuning of 1028 of the period was introduced in the
phase of the driving force. The inset shows a log-log plot of th
normalized number of pairs of points on the reconstructed trajecto
within a given distance in embedding spaces of different dime
sions p. The leveled off slope at higherp gives the correlation
dimension of the attractor. For clarity, the curves at differentp were
displaced from each other along thex axis.
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gime. In this report we do not pursue a quantitative study
the motion dependence on the parameters of the driv
force.

In conclusion, we have further demonstrated that suc
seemingly simple system consisting of one type of cha
ics
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carriers executing flights in the gap between two electro
can exhibit many fascinating features of nonlinear dissipa
dynamical systems. In addition to earlier known se
sustained oscillations and hysteresis, chaotic responses
now been found to be induced by a periodic applied forc
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